Elefantenrüsselfisch: Kleines Gehirn vollbringt erstaunliche Leistung

(27.06.2016) Der Elefantenrüsselfisch erkundet Gegenstände in seiner Umgebung, indem er seine Augen oder seinen elektrischen Sinn einsetzt – manchmal auch beides zusammen.

Wie komplex die Verarbeitung dieser Sinneseindrücke ist, haben nun Zoologen der Universität Bonn mit einer Kollegin aus Oxford herausgefunden. Mit seinem winzigen Gehirn erbringt der Fisch ähnliche Leistungen wie Menschen oder Säugetiere.

Die Ergebnisse sind vorab online in den „Proceedings of the National Academy of Sciences of the United States of America“ (PNAS) veröffentlicht. Die Druckausgabe erscheint demnächst.


Prof. Dr. Gerhard von der Emde und Sarah Schumacher vom Institut für Zoologie der Universität Bonn mit einem Elefantenrüsselfisch im Aquarium

Der Elefantenrüsselfisch (Gnathonemus petersii) ist in den Fließgewässern Westafrikas weit verbreitet und jagt in der Dämmerung nach Insektenlarven. Dabei hilft ihm sein elektrisches Organ im Schwanz, das schwache elektrische Impulse aussendet.

In der Haut des Fisches befinden sich zahlreiche Sensoren, die das durch Gegenstände im Gewässer veränderte elektrische Feld wahrnehmen.

„Es handelt sich dabei um eine aktive Elektroortung, prinzipiell ähnlich wie die aktive Echoortung von Fledermäusen, die mit Ultraschall ein dreidimensionales Bild ihrer Umgebung wahrnehmen“, sagt Prof. Dr. Gerhard von der Emde vom Institut für Zoologie der Universität Bonn.

Darüber hinaus kann sich der Elefantenrüsselfisch auch mit seinen Augen orientieren.

Prof. von der Emde hat nun mit seiner Doktorandin Sarah Schumacher und Dr. Theresa Burt de Perera von der Universität Oxford untersucht, wie der ungewöhnliche Fisch die Informationen aus den verschiedenen Sinneskanälen verarbeitet.

„Die Tiere nutzen normalerweise beide Sinne. Falls erforderlich, zum Beispiel weil einer der beiden Sinne keine Informationen liefert oder sich die Informationen der beiden Sinne stark unterscheiden, können die Fische aber zwischen ihrem Sehsinn und dem elektrischen Sinn hin- und herschalten“, fasst Schuhmacher das Ergebnis zusammen.

Wie sich die Fische mit diesen beiden Sinnen das jeweils beste Bild von ihrer Umgebung verschaffen, überraschte die Wissenschaftler: Wenn die Tiere ein im Aquarium befindliches Objekt zum Beispiel mit dem Sehsinn kennenlernten, konnten sie es auch mit dem elektrischen Sinn wiedererkennen, obwohl sie es nie zuvor elektrisch wahrgenommen hatten.

Fische gaben den zuverlässigsten Sinnesinformationen den Vorzug

Außerdem bewiesen die Fische eine Fähigkeit, die man ihnen bisher nicht zugetraut hatte: Ihr Gehirn gab den Informationen mehr Gewicht, die es für zuverlässiger hielt. Wenn im Nahbereich bis zwei Zentimeter die beiden Sinne unterschiedliche Informationen lieferten, vertrauten die Fische nur den elektrischen Informationen und waren dann für die visuellen Reize „blind“.

Bei weiter entfernten Objekten bauten die Tiere hingegen vor allem auf ihre Augen. Sie erfassten die Umgebung am besten, wenn sie ihren visuellen und ihren elektrischen Sinn kombiniert einsetzten.

„Ein Transfer zwischen verschiedenen Sinnen war bisher nur von einigen hochentwickelten Säugetierarten wie Affen, Delfinen, Ratten und Menschen bekannt“, sagt Prof. von der Emde.

Ein Beispiel: Menschen bewegen sich in einer dunklen, unbekannten Wohnung tastend vorwärts, um nicht zu stolpern. Geht dann das Licht an, werden die ertasteten Hindernisse ohne Probleme auch mit den Augen wiedererkannt.

Säugetiere verarbeiten solche Informationen mit ihrer Hirnrinde. Der Elefantenrüsselfisch verfügt jedoch nur über ein relativ kleines Gehirn und überhaupt keine Hirnrinde – und schaltet trotzdem zwischen den Sinnen hin und her.

Ausgeklügelte Experimentieranordnung

Die Wissenschaftler hatten sich eine sehr ausgeklügelte Untersuchungsanordnung ausgedacht: Der Elefantenrüsselfisch befand sich in einem Aquarium. Davon abgetrennt waren zwei verschiedene Kammern, zwischen denen das Tier wählen konnte.

Hinter einer Öffnung zu den Kammern befanden sich jeweils verschiedenförmige Objekte: eine Kugel oder ein Quader. Der Fisch lernte, eines dieser Objekte anzusteuern, indem er mit einigen Insektenlarven belohnt wurde. Daraufhin suchte er wieder nach diesem Objekt, um erneut eine Belohnung zu erhalten.

Wann setzt der Fisch einen bestimmten Sinn ein? Um diese Frage zu beantworten, wiederholten die Forscher das Experiment in absoluter Dunkelheit.

Jetzt konnte das Tier nur auf seinen elektrischen Sinn vertrauen. Wie Aufnahmen mit der Infrarotkamera zeigten, gelang ihm die Objekterkennung nur auf nahe Distanzen. Bei Licht war der Fisch dagegen am erfolgreichsten, weil er Augen und elektrischen Sinn für die unterschiedlichen Entfernungen einsetzen konnte.

Um herauszubekommen, wann der Fisch allein seine Augen nutzt, machten die Forscher die Objekte für den elektrischen Sinn unsichtbar. Die Kugel und der Quader, die gefunden werden sollten, besaßen nun die gleichen elektrischen Eigenschaften wie das Wasser.

Es waren viele Wiederholungen der einzelnen Experimente notwendig, um mit statistischen Auswertungen auf die Sinnesverarbeitung des Elefantenrüsselfischs schließen zu können.

Insgesamt arbeiteten die Wissenschaftler mit zehn Tieren, die quasi im Schichtbetrieb eingesetzt wurden. „Dabei zeigte sich bei den verschiedenen Individuen ein fast identisches Verhalten“, sagt Prof. von der Emde. Deshalb sind sich die Wissenschaftler sicher, dass diese enorme Sinnesleistung nicht nur von einem besonders versierten Exemplar, sondern von allen Elefantenrüsselfischen erbracht werden.

Publikation

Sarah Schumacher, Theresa Burt de Perera, Johanna Thenert & Gerhard von der Emde: Cross-modal object recognition and dynamic weighting of sensory inputs in a fish, PNAS



Weitere Meldungen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Daniel Erny/Universitätsklinikum Freiburg

Gehirn des weltweit ältesten Wirbeltieres untersucht

Detaillierte Untersuchungen des ältesten Gehirns können neue Erkenntnisse für altersbedingte Krankheiten des Gehirns ermöglichen. Studie im Fachmagazin Acta Neuropathologica erschienen
Weiterlesen

Junge Zebrafische können sozial oder eher introvertiert sein. Welche Unterschiede sich dabei im Gehirn und den Genen der Tiere zeigen, will Johannes Larsch untersuchen.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Junge Zebrafische sollen Aufschluss über Nervenzellschaltkreise für Sozialverhalten geben

Ein Blick oder eine Geste reichen häufig, um die Stimmung eines anderen einzuschätzen und das eigene Verhalten daran anzupassen. Menschen, die solche sozialen Signale nicht interpretieren können, finden sich in einer Gesellschaft nur schwer zurecht
Weiterlesen

Zieht ein Bild der Umwelt an den Augen vorbei, halten Zebrafische mit Schwimmbewegungen ihre Position. Neurobiologinnen zeigen, über welche Nervenzellbahnen dieses Verhalten koordiniert wird.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Das Gehirn im Fluss: Nervenzellen im Prätektum berechnen großflächige Bewegungen

Wir sehen mit dem Gehirn – die Augen liefern die Informationen. Doch, wie berechnen die Nervenzellen das Gesehene?
Weiterlesen

Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Wie Gehirnzellen des Fisches auf Alzheimer reagieren

Im Gegensatz zum Menschen haben Zebrafische hervorragende regenerative Fähigkeiten: Wenn deren Gehirnzellen durch Krankheit oder Verletzung verloren gehen, können sie aus sogenannten Vorläuferzellen leicht nachwachsen
Weiterlesen

Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt.; Bildquelle: Iglesias et al. 2018

Nachtaktive Fische haben kleinere Gehirne

Ein internationales Forscherteam hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische
Weiterlesen

Universität Konstanz

„Linkshändige“ Fische und asymmetrische Gehirne

Konstanzer Biologen finden Zusammenhänge zwischen „Händigkeit“, Gehirnstruktur und Genen bei extrem spezialisierten Buntbarschen
Weiterlesen

Ein großes Gehirn macht den Guppy zwar schlauer, aber auch anfälliger für Krankheiten; Bildquelle: Paul Bentzen

Großes Gehirn bringt angeborenes Immunsystem ins Wanken

Ein großes Gehirn mag die Aquarienfischart Guppy zwar schlauer, aber möglicherweise auch leichter krank machen
Weiterlesen

Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet.; Bildquelle: MPI f. Neurobiologie/ Semmelhack

Zebrafische jagen punktgenau: Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen