Fisch erkennt seine Beute an elektrischen Farben

(12.11.2018) Der afrikanische Elefantenrüsselfisch erzeugt schwache elektrische Pulse, um sich in seiner Umgebung zurecht zu finden. Dieser Ortungs-Sinn weist augenscheinlich eine erstaunliche Parallele zum Sehen auf, wie nun eine Studie der Universität Bonn zeigt.

Demnach haben verschiedene Objekte unterschiedliche elektrische „Farben“. Diese nutzt der Fisch etwa, um seine Lieblingsspeise – Zuckmückenlarven – von anderem Kleingetier oder Pflanzen zu unterscheiden. Die Arbeit ist nun in der renommierten Fachzeitschrift „Current Biology“ erschienen.


Der Elefantenrüsselfisch erzeugt kurze schwache Spannungspulse, mit deren Hilfe er seine Umgebung wahrnimmt. Dabei besitzen unterschiedliche Objekte verschiedene "elektrische Farben"
Elefantenrüsselfische sind nachtaktiv. Auf ihre Augen können sie sich daher bei der Beutesuche nicht verlassen. Das haben sie aber auch gar nicht nötig: In ihrem Schwanz tragen sie eine Art „Elektro-Taschenlampe“ mit sich.

Damit erzeugen sie rund 80 Mal pro Sekunde kurze elektrische Pulse. Ihre Haut wiederum – insbesondere ihr rüsselartiges Kinn – ist übersät von Elektrorezeptoren: kleinen Messfühlern, mit denen sie messen können, wie diese Pulse von der Umgebung reflektiert werden.

Und darin haben sie es zu wahrer Meisterschaft gebracht: Sie können mit ihrem Elektro-Sinn Distanzen abschätzen, Formen und Materialien voneinander unterscheiden, zwischen toten und lebendigen Objekten differenzieren.

Ja, mehr noch: Sie erkennen binnen Sekundenbruchteilen, ob sich im Kies und Sand am Grunde ihres Gewässers Zuckmückenlarven verstecken, ihre Lieblingsspeise. Und das äußerst treffsicher – Larven anderer Insekten verschmähen sie größtenteils.

Wie sie das schaffen, war lange Zeit unklar. Zwar verändern Objekte in charakteristischer Weise die Intensität des Elektrosignals – manche vermindern es deutlich, andere reflektieren es besser.

„Allerdings reicht das nicht, um Beutetiere eindeutig zu erkennen“, erklärt Martin Gottwald vom Zoologischen Institut der Universität Bonn.

„So sinkt die Signalstärke zum Beispiel auch mit steigender Entfernung.“ Lebewesen haben jedoch noch eine weitere Eigenschaft: Sie modifizieren zusätzlich die Form der Elektro-Pulse. Doch auch diese Signaländerung hängt von Distanz, Größe und Position ab.

Die Kombination der beiden Signaleigenschaften könnte diese Probleme lösen. Bei unserem Auge ist es ganz ähnlich: Seine Netzhaut enthält Rezeptoren für rotes, grünes und blaues Licht.

Aus dem „Mischungsverhältnis“ berechnet unser Gehirn dann die Farbe des gesehenen Objekts. Und die bleibt weitgehend gleich, egal wie groß oder weit entfernt der jeweilige Gegenstand ist.

Zwei verschiedene Rezeptortypen

Ein Beweis, dass es bei Elefantenrüsselfischen ähnlich ist, stand allerdings bislang aus. Klar ist aber, dass die Tiere über zwei verschiedene Arten von Elektrorezeptoren verfügen. Der eine misst nur die Intensität des Signals, der andere zusätzlich seine Form.

„Wir konnten nun zeigen, dass der Fisch das Verhältnis dieser beiden Messwerte zueinander nutzt, um seine Beute zu identifizieren“, erklärt Prof. Dr. Gerhard von der Emde, der die Studie geleitet hat.

Zunächst ermittelten die Wissenschaftler, wie sich Intensität und Form des Ortungssignals je nach Objekttyp zueinander verhalten. „Dabei haben wir festgestellt, dass diese Relation für gleiche Objekte immer konstant ist“, sagt von der Emde.

Und zwar unabhängig von ihrer Entfernung oder anderen Umgebungs-Parametern. „Eine Zuckmückenlarve hat demnach tatsächlich eine konstante ‚elektrische Farbe‘. Und die unterscheidet sich deutlich von der anderer Larven, von Pflanzenteilen, Artgenossen oder auch fremden Fischen“, ergänzt Gottwald.

Nun überprüften die Forscher, inwiefern ihre Versuchstiere diese Information nutzten. Dazu präsentierten sie ihnen verschiedene elektronische „Mini-Chips“, die nur einen Durchmesser von einem Millimeter hatten. Manche Chips erzeugten unterschiedliche elektrische Farben.

Sie leuchteten beispielsweise wie eine Zuckmückenlarve oder andere Insektenlarven. Andere Chips waren elektrisch ‚farblos’, ähnlich wie zum Beispiel ein Kieselsteinchen.

Hunger auf Chips

Der Effekt war erstaunlich: Waren die Chips wie ihre Lieblingsspeise gefärbt, schnappten die Elefantenrüsselfische reflexartig zu. In 70 Prozent aller Fälle ließen sie sich so aufs Kreuz legen – und das, obwohl die Fake-Mahlzeiten gar keinen beutetypischen Geruch aufwiesen.

Auch nach zahlreichen Versuchen lernten die Tiere nicht, die Chips zu meiden. Anders gefärbte Chips verschmähten sie dagegen weitgehend, elektrisch farblose sogar vollständig. „Das spricht möglicherweise dafür, dass die Beute-Farbe im Gehirn der Fische fest verdrahtet ist“, spekuliert von der Emde.

Sinnvoll wäre das: Die elektrischen Eigenschaften von Lebewesen (und damit auch ihre Farbe) werden maßgeblich von ihrem inneren Aufbau bestimmt. Und der lässt sich nicht so einfach ändern. Es ist daher kaum möglich, dass sich eine Zuckmückenlarve so mir nichts, dir nichts eine Tarnfarbe zulegt.

Publikation

Martin Gottwald, Neha Singh, Andre Haubrich, Sophia Regett und Gerhard von der Emde: Electric Color Sensing in Weakly Electric Fish suggests Color Perception as a Sensory Concept beyond Vision; Current Biology; https://doi.org/10.1016/j.cub.2018.09.036



Weitere Meldungen

IGB

Darum ist der Schwarm so schnell: Vorhersehen, was die anderen tun werden

Fischschwärme, die sich synchron im Wasser bewegen – faszinierend ist die Geschwindigkeit, mit der sie die Richtung wechseln: Wie machen sie das?
Weiterlesen

Empfangsstationen unter Wasser detektieren die Fischbewegungen. Das Bild stammt von einer Forschungskooperation mit dem IMEDA Institut in Mallorca.; Bildquelle: Josep Alós

Hochaufgelöste Ortungsmethoden zeigen die verborgene Welt der Fische

Das Leben der Fische ist geheimnisvoll. Bis vor kurzem war es technisch unmöglich, sie über längere Zeiträume in Gewässern zu beobachten
Weiterlesen

Schwefelmollys vollführen im Schwarm La-Ola-Wellen; Bildquelle: Juliane Lukas

Schwarmverhalten: Darum schwimmen Fische die La-Ola-Welle

Tausende Fische bewegen sich wie eine riesige La-Ola-Welle im Wasser, tauchen ab und kommen bis zu zwei Minuten lang immer wieder an die Oberfläche zurück
Weiterlesen

Buntbarsch-Mutter, die einen Räuber angreift, welcher in einer Plexiglasröhre ins Territorium gesetzt wurde; Bildquelle: Institut für Ökologie und Evolution, Universität Bern

Fischweibchen können über ihre Eier das Fluchtverhalten ihrer Nachkommen beeinflussen

Buntbarsch-Weibchen können über die Zusammensetzung ihrer Eier beeinflussen, wie schnell ihre Nachkommen bei Gefahr die Flucht ergreifen können
Weiterlesen

Westfälische Wilhelms-Universität Münster

Parasiten-Infektion stört das Fluchtverhalten in Fischschwärmen

Das Schwarmverhalten bei Fischen und anderen Tieren ist eine wichtige Überlebensstrategie. Bestimmte Parasiten manipulieren diese Strategie
Weiterlesen

Ein Anemonenfisch-Paar, das sich in Tentakeln seiner Wirtsanemone vor Tauchern versteckt; Bildquelle: Evan Brown

Erschreckt (sich) Nemo?

Wie reagieren Clownfische im Korallenriff auf die Begegnung mit Menschen?
Weiterlesen

Im Rahmen des Projekts Effect-Net erforschen Wissenschaftler die Effekte von Medikamenten und Lebensmittelzusatzstoffen in der aquatischen Umwelt; Bildquelle: Susanne Mieck/Universität Heidelberg

Rückstände von Arzneimitteln in Gewässern: Antidepressiva machen Fische zur leichten Beute

Besonders starke Effekte haben Medikamente zur Behandlung von Depressionen. Bei ihnen verlieren die Fische ab einer bestimmten Konzentration der Substanzen im Wasser ihre natürliche Reaktion auf Stress
Weiterlesen

Steelhead Trout; Bildquelle: James Losee

Forellen beim Nestbau belauschen

„Steelhead“ Forellen wühlen beim Bau ihrer Laichgruben das Sediment des Flussbettes auf und beeinflussen die Beschaffenheit des Flussbetts und den Transport von Sediment
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen