Das Gehirn im Fluss: Nervenzellen im Prätektum berechnen großflächige Bewegungen

(02.07.2019) Wir sehen mit dem Gehirn – die Augen liefern die Informationen. Doch, wie berechnen die Nervenzellen das Gesehene? Wissenschaftlerinnen am Max-Planck-Institut für Neurobiologie haben jungen Zebrafischen ins Gehirn geschaut und den Informationsfluss über einzelne Nervenzellen hinweg verfolgt.

Die Studie zeigt, dass die Zellen im Auge Bewegungen der Umwelt vorfiltern, die Prätektum-Hirnregion die Information der zwei Augen zusammensetzt und dann an die Bewegungszentren weitergibt. Diese Bahn, Auge-Prätektum-Hinterhirn, besteht auch in anderen Wirbeltiergehirnen, und ist dort vermutlich ähnlich verschaltet.

Die Fotorezeptoren der Netzhaut nehmen Lichtveränderungen wahr, und nachgeschaltete Nervenzellen im Auge erkennen schon Bewegung. Die größeren Zusammenhänge werden jedoch erst tief im Gehirn hergestellt. Wie Nervenzellen sinnvolle Bilder aus einzelnen Lichtpunkten zusammensetzen und dann ein passendes Verhalten daraus ableiten, wird intensiv erforscht.


Zieht ein Bild der Umwelt an den Augen vorbei, halten Zebrafische mit Schwimmbewegungen ihre Position. Neurobiologinnen zeigen, über welche Nervenzellbahnen dieses Verhalten koordiniert wird.

„Wir können jetzt im Zebrafischgehirn nachvollziehen, in welchen Schritten Zellen großflächige Bewegungsinformation verarbeiten“, erklärt Anna Kramer, die mithilfe neuester Methoden genau dies geschafft hat.

„Wir haben die Aktivität vieler, genetisch vormarkierter Nervenzellen beobachtet und anschließend einzelne herausgefiltert, die auf großflächigen Bewegungen reagierten. Diese haben wir dann mit einem gezielten Laserstrahl mit all ihren Verästelungen sichtbar gemacht“, erklärt Kramer eine der eingesetzten Methoden.

„Die Form dieser Zellen und ihre Anordnung gibt uns ein genaues Bild der betrachteten Hirnregion.“ Die so gewonnenen Daten haben Kramer und ihre Kolleginnen aus der Abteilung von Herwig Baier dann mit Zellrekonstruktionen aus dem parallel in der Abteilung entwickelten "Nervenzellatlas" abgeglichen. In Kombination zeigen die Methoden, wie sich ein Verhalten vom auslösenden Reiz im Auge seinen Weg zu den motorischen Zentren im Gehirn bahnt.

Bei dem untersuchten Verhalten handelt es sich um die sogenannte "optomotorische Reaktion", an der noch viele unbekannte Nervenzellen beteiligt sind. Mit diesem angeborenen Verhalten versuchen Fische, ihre Position in einem strömenden Gewässer zu halten: Bewegt sich ein Tier nach hinten, zieht ein Bild der Umgebung nach vorne an seinen Augen vorbei.

Gegen diesen "optischen Fluss" schwimmen die Fische an, um ein Abdriften in der realen Strömung zu vermeiden. Im Labor haben die Wissenschaftlerinnen den Zebrafischlarven ein solches Abdriften durch vorbeiziehende Streifenmuster vorgegaukelt und den Tieren dabei mit hochauflösenden Bildgebungsverfahren ins Gehirn geschaut.

Die Neurobiologinnen konnten zeigen, dass richtungsselektive Nervenzellen der Netzhaut in einem ganz bestimmten Areal des Prätektums enden. Das Prätektum ist Teil einer Region im Fischgehirn, in der visuelle Eindrücke der beiden Augen verbunden werden und Verhaltensantworten vorbereiten. „Wir haben gezeigt, wie der neuronale Schaltkreis zur Erkennung des optischen Flusses im Prätektum aufgebaut ist und wie richtungsselektive Zellen visuelle Signale schrittweise in Bewegungskommandos umwandeln“, so Kramer.

Die Studie der Martinsrieder Wissenschaftlerinnen bekräftigt die Hypothese, dass visuelle Information vorsortiert über parallele Pfade ins Gehirn gelangen, wo sie dann bestimmte Verhaltensantworten auslösen.

„Im Zebrafischgehirn können wir diese Vorgänge nun von Zelle zu Zelle verfolgen und daraus dann auch Rückschlüsse auf das Geschehen im Gehirn anderer Wirbeltiere ziehen“, erklärt Fumi Kubo, die Leiterin der Studie, die mittlerweile als Professorin am National Institute of Genetics in Mishima, Japan, arbeitet.

Publikation

Anna Kramer, Yunmin Wu, Herwig Baier & Fumi Kubo
Neuronal architecture of a visual center that processes optic flow
Neuron, online 27. Mai 2019, Printausgabe 3. Juli 2019



Weitere Meldungen

Junge Zebrafische können sozial oder eher introvertiert sein. Welche Unterschiede sich dabei im Gehirn und den Genen der Tiere zeigen, will Johannes Larsch untersuchen.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Junge Zebrafische sollen Aufschluss über Nervenzellschaltkreise für Sozialverhalten geben

Ein Blick oder eine Geste reichen häufig, um die Stimmung eines anderen einzuschätzen und das eigene Verhalten daran anzupassen. Menschen, die solche sozialen Signale nicht interpretieren können, finden sich in einer Gesellschaft nur schwer zurecht
Weiterlesen

Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Wie Gehirnzellen des Fisches auf Alzheimer reagieren

Im Gegensatz zum Menschen haben Zebrafische hervorragende regenerative Fähigkeiten: Wenn deren Gehirnzellen durch Krankheit oder Verletzung verloren gehen, können sie aus sogenannten Vorläuferzellen leicht nachwachsen
Weiterlesen

Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt.; Bildquelle: Iglesias et al. 2018

Nachtaktive Fische haben kleinere Gehirne

Ein internationales Forscherteam hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische
Weiterlesen

Universität Konstanz

„Linkshändige“ Fische und asymmetrische Gehirne

Konstanzer Biologen finden Zusammenhänge zwischen „Händigkeit“, Gehirnstruktur und Genen bei extrem spezialisierten Buntbarschen
Weiterlesen

Forscher können einzelne Nervenzellen im Zebrafischgehirn mit Licht aktivieren (magenta) und beobachten, welche benachbarten Zellen mit der Zelle im gleichen Schaltkreis verbunden sind (gelb); Bildquelle: Max-Planck-Institut für Neurobiologie / Förster

Pfade im Fischgehirn ausleuchten

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben mit “Optobow” eine Methode entwickelt, die es ermöglicht, allein mittels Licht miteinander verbundene Nervenzellen im lebenden Gehirn zu entdecken
Weiterlesen

Prof. Dr. Gerhard von der Emde und Sarah Schumacher vom Institut für Zoologie der Universität Bonn mit einem Elefantenrüsselfisch im Aquarium; Bildquelle: Barbara Frommann/Uni Bonn

Elefantenrüsselfisch: Kleines Gehirn vollbringt erstaunliche Leistung

Der Elefantenrüsselfisch erkundet Gegenstände in seiner Umgebung, indem er seine Augen oder seinen elektrischen Sinn einsetzt – manchmal auch beides zusammen
Weiterlesen

Ein großes Gehirn macht den Guppy zwar schlauer, aber auch anfälliger für Krankheiten; Bildquelle: Paul Bentzen

Großes Gehirn bringt angeborenes Immunsystem ins Wanken

Ein großes Gehirn mag die Aquarienfischart Guppy zwar schlauer, aber möglicherweise auch leichter krank machen
Weiterlesen

Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet.; Bildquelle: MPI f. Neurobiologie/ Semmelhack

Zebrafische jagen punktgenau: Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen