Nachtaktive Fische haben kleinere Gehirne

(10.07.2018) Ein internationales Forscherteam, darunter Wissenschaftler des Senckenberg Biodiversität und Klima Forschungszentrums, hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische.

Die Studie wirft ein neues Licht darauf, welchen Einfluss der Tag- und Nachtrhythmus auf die Evolution von Wirbeltiergehirnen hat und wurde kürzlich im „Journal of Evolutionary Biology“ veröffentlicht.

Wenn es Nacht wird über dem Meer, begibt sich ein großer Teil der Fische zur Ruhe. Die Nachtschwärmer unter den Fischen hingegen werden dann munter.


Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt

Ob sich diese gegensätzlichen Lebensstile auch in den Gehirnen der Fische niederschlagen, hat jetzt eine Gruppe von Forschern aus Japan, den USA und Deutschland untersucht.

Ihre Studie zeigt, dass die Gehirnareale, die visuelle Reize verarbeiten, bei nachtaktiven Fischen kleiner sind als bei tagaktiven Fischen. „Das ist überraschend, weil solche Fische gleichzeitig oft vergrößerte Augen haben, um die Lichtausbeute zu optimieren.

Obwohl ihnen eine gute Sicht anscheinend wichtig ist, wenden sie weniger Grips dafür auf, die über die Augen gewonnenen Informationen zu verarbeiten. Sie verzichten also auf etwas”, so Dan Warren, Senior-Wissenschaftler am Senckenberg Biodiversität und Klima Forschungszentrum.

Um die Größe der Gehirnareale der Fische zu vermessen, fertigte die Forschergruppe dreidimensionale Scans der Gehirne tag- und nachtakiver Fische an, die das Team vor der Küste Hawaiis, Curaçaos und North Carolinas, USA, gefangen hatte.

Die dabei zum Scannen eingesetzte Computertomographie ist die gleiche, die in der Medizin genutzt wird. Die Messdaten der Gehirnareale wurden anschließend mit Daten zur Evolution, Ökologie, Morphologie und Verhalten der Fische in Beziehung gesetzt.

Tagaktive Fische haben demnach insgesamt mehr Gehirngewebe, um visuelle Informationen zu verarbeiten, als nachtaktive Fische. Absoluter Spitzenreiter der tagaktiven Fische sind Plattfische, die nahe eines Riffs leben und ihre Färbung verändern, um sich den komplexen Farbmustern des Riffs anzupassen.

Möglich wird dies, weil das Gehirn dieser Fische einem Hochleistungsrechner zur Verarbeitung visueller Informationen vergleichbar ist.

Wie die Studie zudem zeigt, besitzen nur nachtaktive Fische, die im uferfernen offenen Wasser auf Futtersuche gehen, ähnlich große Gehirnareale zur Verarbeitung visueller Reize wie tagaktive Fische.

„Neben dem Tag- und Nachtrhythmus wird die Größe der entsprechenden/untersuchten Gehirnareale wohl auch dadurch beeinflusst, ob sich der Fisch vor Räubern in Acht nehmen muss. Deren frühzeitiges Aufspüren ist wie die Tarnung ein Beispiel für die große Bedeutung einer besseren Fähigkeit zur Verarbeitung visueller Reize“, erklärt Warren.

Nach Ansicht der Autoren sind die Studienergebnisse mit Blick auf die zunehmende Lichtverschmutzung im ufernahen Meer durch wachsende Küstenstädte besorgniserregend. Künstliches Licht beeinflußt erwiesenermaßen den Tag- und Nachtrhythmus von Tieren und verändert damit ihren Aktivitätsrhythmus. Doch genau auf den bauen die eingespielten Nahrungsnetze im Meer auf.

„Viele Studien haben gezeigt, dass schnelle Veränderungen des Nahrungsnetzes häufig mit einem erheblichen Artenverlust in einem Ökosystem einhergehen. Außerdem wissen wir jetzt, dass der bisherige Tag- und Nachtrhythmus im Meer die Evolution der Fischgehirne prägte.

Neben dem kurzfristigen Einfluss auf Nahrungsnetze könnte die Lichtverschmutzung daher langfristig neurologische Veränderungen bei Fischen verursachen deren Folgen nicht absehbar sind“, so Warren.


Weitere Meldungen

Junge Zebrafische können sozial oder eher introvertiert sein. Welche Unterschiede sich dabei im Gehirn und den Genen der Tiere zeigen, will Johannes Larsch untersuchen.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Junge Zebrafische sollen Aufschluss über Nervenzellschaltkreise für Sozialverhalten geben

Ein Blick oder eine Geste reichen häufig, um die Stimmung eines anderen einzuschätzen und das eigene Verhalten daran anzupassen. Menschen, die solche sozialen Signale nicht interpretieren können, finden sich in einer Gesellschaft nur schwer zurecht
Weiterlesen

Zieht ein Bild der Umwelt an den Augen vorbei, halten Zebrafische mit Schwimmbewegungen ihre Position. Neurobiologinnen zeigen, über welche Nervenzellbahnen dieses Verhalten koordiniert wird.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Das Gehirn im Fluss: Nervenzellen im Prätektum berechnen großflächige Bewegungen

Wir sehen mit dem Gehirn – die Augen liefern die Informationen. Doch, wie berechnen die Nervenzellen das Gesehene?
Weiterlesen

Universität Konstanz

„Linkshändige“ Fische und asymmetrische Gehirne

Konstanzer Biologen finden Zusammenhänge zwischen „Händigkeit“, Gehirnstruktur und Genen bei extrem spezialisierten Buntbarschen
Weiterlesen

Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet.; Bildquelle: MPI f. Neurobiologie/ Semmelhack

Zebrafische jagen punktgenau: Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt
Weiterlesen

nMLF-Region im Mittelhirn von Zebrafischlarven. Mit Hilfe der Optogenetik können Forscher hier einzelne Nervenzellen (lila) gezielt aktivieren; Bildquelle: MPI für Neurobiologie / Thiele

Wie das Fischgehirn den Schwanz steuert

Damit ein Fisch vorwärts schwimmen kann, müssen Nervenzellen in seinem Gehirn und Rückenmark fein abgestimmt die Hin- und Her-Bewegungen des Schwanzes kontrollieren. Doch auch die Stellung des Schwanzes, die die Schwimmrichtung vorgibt, muss durch Hirnaktivität feinjustiert werden
Weiterlesen

Neu entdeckte Nervenzell-Typen (gelb) helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren. In Blau das Gehirn einer Fischlarve, mit angedeuteter Lage der Augen.; Bildquelle: Max-Planck-Institut für Neurobiologie / Kubo

Warum Fische beim Schwimmen nicht abdriften

Neu entdeckte Nervenzell-Typen helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen