Wie Schützenfische die Gesetze der Hydrodynamik anwenden

(07.09.2014) Für Menschen ist es bis heute eine technologische Herausforderung, doch Schützenfische beherrschen diese Kunst perfekt: Sie können freie Wasserstrahlen produzieren, die Ziele in unterschiedlicher Entfernung präzise erreichen – und zwar so, dass die Wasserstrahlen exakt mit dem jeweils gewünschten Druck auf den Zielen auftreffen.

Das Maul der Fische arbeitet dabei wie eine flexible Düse: Es kann die dynamischen Eigenschaften von Wasserstrahlen steuern und den jeweiligen Umständen anpassen. Über diese Forschungsergebnisse berichten Prof. Dr. Stefan Schuster und Dipl.-Biol. Peggy Gerullis, Universität Bayreuth, im Forschungsmagazin „Current Biology“.

‚Beutetraining‘ im Labor

Schützenfische leben vor allem in tropischen Brackwassergebieten. Sie ernähren sich von Insekten, Spinnen oder auch von kleinen Eidechsen, die sich dicht am Ufer auf Blättern, Halmen oder Zweigen niedergelassen haben.


Prof. Dr. Stefan Schuster und Dipl.-Biol. Peggy Gerullis, Lehrstuhl für Tierphysiologie der Universität Bayreuth

Mit einem scharfen gezielten Wasserstrahl schießen die Fische ihre ausgewählte Beute seitlich von unten an, so dass sie ins Wasser fällt und hier kurze Zeit später geschnappt werden kann.

Für ihre Untersuchungen haben die Bayreuther Tierphysiologen mehrere Schützenfische einem speziellen ‚Beutetraining‘ im Labor ausgesetzt. Hier konnten sie die Fische regelmäßig dazu verlocken, Insekten zu erbeuten, die sich 20, 40 oder 60 Zentimeter über der Wasseroberfläche befanden.

Sowohl die Körperbewegungen der Fische als auch die erzeugten Wasserstrahlen wurden gefilmt und in Zeitlupe untersucht.

Mit dynamisch gesteuerten Wasserstrahlen zum Erfolg

Wie sich herausstellte, sind Schützenfische nicht nur imstande, Ziele in verschiedenen Entfernungen präzise zu treffen. Sie können auch die Stärke und die Geschwindigkeit des mit dem Maul erzeugten Wasserstrahls regulieren.


Schützenfische im Versuchslabor am Lehrstuhl für Tierphysiologie der Universität Bayreuth
Dadurch gelingt es ihnen, dass an der Spitze des Strahls kurz vor Erreichen des Ziels ein schlagkräftiger Tropfen entsteht; und zwar deshalb, weil das später ausgestoßene Wasser gleichsam aufholt und sich mit dem zuerst ausgestoßenen Wasser an der Spitze des Strahls vereint.

Wenn der Tropfen kurze Zeit später das Insekt trifft, ist der Druck stark genug, um es von der Pflanze zu lösen und ins Wasser fallen zu lassen. Der Druck ist aber auch nicht zu stark, denn das Insekt soll nicht zu weit weggeschleudert werden und in Reichweite bleiben.

Blick in die Evolutionsgeschichte

Die Schützenfische besitzen also die Fähigkeit, die Entfernung ihrer Beute und die dynamischen Eigenschaften des von ihnen produzierten Wasserstrahls jedesmal aufs neue aufeinander abzustimmen. Dadurch ist gewährleistet, dass sich der Tropfen an der Spitze des Strahls nicht zu früh, sondern erst unmittelbar vor dem Zielobjekt bildet.

„Diese Steuerungsleistungen haben eine erstaunliche Ähnlichkeit mit der Fähigkeit des Menschen, weit entfernte Ziele mit Wurfgeschossen wie Speeren oder Steinen zu treffen“, erklärt Prof. Schuster und verweist auf Erkenntnisse der Evolutionsbiologie, wonach die Ausbildung dieser Fähigkeit das Wachstum des menschlichen Gehirns erheblich gefördert hat.

Zahlreiche Neuronen seien entstanden, um Zielgenauigkeit und Wurfstärke den jeweiligen Entfernungen der Ziele anpassen zu können. Diese Neuronen hätten später auch andere Fähigkeiten unterstützen können.

„Daher drängt sich die Frage auf, ob der Schützenfisch nicht auf ähnliche Weise im Verlauf der Evolution ein deutlich komplexeres Gehirn als vergleichbare Fische entwickelt hat oder noch entwickeln wird“, meint Prof. Schuster.

„Eine solche Entwicklung wäre durchaus naheliegend. Das Schützenfischhirn ist scheinbar sehr viel einfacher als das des Menschen, es besitzt zum Beispiel keine Großhirnrinde.

Umso überraschender sind seine außergewöhnlichen kognitiven Fähigkeiten, und es könnte durchaus sein, dass die Entwicklung der ausgefeilten Schusstechnik erheblich dazu beigetragen hat, dass das Schützenfischgehirn solche außergewöhnlichen Leistungen erbringen kann.“

Dem Schützenfisch auf’s Maul geschaut: Anregungen für die Düsentechnik

Der Schützenfisch kann die Reichweite, die Geschwindigkeit und die Stärke des Wasserstrahls deshalb so perfekt koordinieren, weil er sein Maul wie eine flexible Düse einsetzt.

Während der Wasserstahl herausschießt, kann er den Durchmesser des geöffneten Mauls in kürzester Zeit verringern oder vergrößern – jeweils so, wie es angesichts der Beute für die Erzeugung eines effektiven Strahls erforderlich ist.

„Dieses ‚Feintuning‘ könnte sich durchaus als Vorbild für neue Entwicklungen in der Düsentechnik eignen“, meint Dipl.-Biol. Peggy Gerullis, die am Lehrstuhl für Tierphysiologie der Universität Bayreuth promoviert.

„Auf vielen Gebieten, beispielsweise in der Medizintechnik, besteht heute großes Interesse daran, Flüssigkeitsstrahlen gezielt zum Polieren, Reinigen oder Schneiden einzusetzen.

Dabei kommt es darauf an, die sogenannten abrasiven Eigenschaften der Strahlen präzise zu kontrollieren. Wie dies geschehen könnte, dafür bietet der Schützenfisch originelle Anregungen.“

Förderung durch die Deutsche Forschungsgemeinschaft

„Unsere Forschungsarbeiten zu den Schützenfischen wurden von der Deutschen Forschungsgemeinschaft großzügig gefördert, der wir dafür ausdrücklich danken“, erklärt Prof. Schuster.

„Es freut uns sehr, dass die DFG in den letzten Jahren unsere teilweise außergewöhnlichen Projekte unterstützt hat, mit denen wir wissenschaftliches Neuland betreten haben. Einige unserer Doktorandinnen und Doktoranden waren wesentlich daran beteiligt.“

Veröffentlichung

Peggy Gerullis and Stefan Schuster,
Archerfish actively control hydrodynamics of their jets,
in: Current Biology (24),
DOI: 10.1016/j.cub.2014.07.059



Weitere Meldungen

Größenvergleich von Zähnen eines heutigen ca. 2,7m langen Weißen Hais Carcharodon carcharias (A) und eines ca. 9m langen Otodus megalodon aus dem Miozän von South Carolina, U.S.A. (B).; Bildquelle: J. Kriwet

Anders als gedacht: Urzeithai Megalodon unterscheidet sich in Körperform und Lebensweise vom Weißen Hai

Forschungsteam liefert neue und tiefere Einblicke in die Biologie eines der größten jemals existierenden marinen Fleischfressers
Weiterlesen

Maul der Art Panaqolus cf. Changae; Bildquelle: Konn-Vetterlein

Die große Vielfalt der Fischmäuler: Welse haften anders als gedacht

Welse kennen einige aus dem heimischen Aquarium als „Fensterputzer“ – denn sie verfügen über ein Mundwerkzeug, mit dem sie sich an ganz unterschiedlichen Oberflächen festsaugen können
Weiterlesen

Buntbarsch; Bildquelle: Joost Woltering

Wie Fische zu ihren Stacheln kamen

Konstanzer Forschende entschlüsseln die genetischen Mechanismen der Bildung von Flossenstacheln bei verschiedenen Fischgruppen
Weiterlesen

Universität Konstanz

Lungenfischflossen zeigen, wie sich Gliedmaßen entwickelten

Neue Untersuchungen zur Flossenentwicklung des Australischen Lungenfischs verdeutlichen, wie sich Flossen zu Gliedmaßen mit Händen und Fingern beziehungsweise Füßen und Zehen entwickelten.
Weiterlesen

Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt.; Bildquelle: Iglesias et al. 2018

Nachtaktive Fische haben kleinere Gehirne

Ein internationales Forscherteam hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische
Weiterlesen

Max-Planck-Gesellschaft

Das Herz der Landwirbeltiere hat sich aus dem Herz urtümlicher Fische entwickelt

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben herausgefunden, dass sich das Herz der Landwirbeltiere aus dem Herz urtümlicher Fische entwickelt hat
Weiterlesen

Julius-Maximilians-Universität Würzburg

Was die Flunder platt macht

Flundern haben aufgrund ihres unsymmetrischen Körperbaus Wissenschaftler schon immer vor Rätsel gestellt. Jetzt hat der Vergleich des Erbguts zweier verwandter Fischarten den Mechanismus aufgedeckt, der für die ungewöhnliche Asymmetrie verantwortlich ist
Weiterlesen

LMU

Fisch-Taxonomie: Studie zu Gehörsteinchen

Die erste umfassende Studie zu Gehörsteinchen bei afrikanischen Prachtgrundkärpflingen liefert wertvolle Informationen für die Identifikation fossiler Überreste der Fische und hilft, deren Evolutionsgeschichte nachzuvollziehen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen