Hunde und Affen besitzen Molekül für Magnetfeld-Wahrnehmung im Auge

(29.02.2016) Hundeartige Raubtiere sowie einige Affenarten können sich möglicherweise ähnlich wie Vögel am Erdmagnetfeld orientieren.

Cryptochrome sind lichtempfindliche Moleküle, die in Bakterien, Pflanzen und Tieren vorkommen. Bei Tieren sind sie an der Steuerung der Tagesrhythmik des Körpers beteiligt.

Außerdem ermöglichen Cryptochrome Vögeln die lichtabhängige Orientierung am Erdmagnetfeld: Cryptochrom 1a findet sich in Lichtsinneszellen des Vogelauges und wird vom Magnetfeld aktiviert. Forscher vom Frankfurter Max-Planck-Institut für Hirnforschung haben nun Cryptochrom 1 auch in Lichtsinneszellen mehrerer Säugetierarten gefunden.


Hunde und manche Affen besitzen in ihren Augen Moleküle, mit denen sie möglicherweise das Magnetfeld der Erde wahrnehmen können.
Möglicherweise besitzen diese Tiere also ebenfalls einen an das Sehsystem gekoppelten Magnetsinn.

Die Wahrnehmung des Erdmagnetfeldes hilft vielen Tierarten bei der Orientierung und Navigation. Einen solchen Magnetsinn haben zum Beispiel manche Insekten, Fische, Reptilien, Vögel und Säugetiere. Menschen scheinen dagegen das Magnetfeld der Erde nicht wahrnehmen zu können.

Bei Zugvögeln ist der Magnetsinn besonders gut untersucht: Im Gegensatz zu einem Pfadfinderkompass, der die Himmelsrichtung anzeigt, erkennt der Vogelkompass die Neigung der Magnetfeldlinien zur Erdoberfläche.

Erstaunlicherweise ist dieser sogenannte Inklinationskompass der Vögel an das Sehsystem gekoppelt, denn das Magnetfeld aktiviert das lichtempfindliche Molekül Cryptochrom 1a in der Netzhaut des Vogelauges.

Cryptochrom 1a liegt dort in den blau- bis UV-empfindlichen Zapfenzellen und reagiert auf das Magnetfeld nur, wenn es gleichzeitig durch Licht angeregt wird.

Christine Nießner und Leo Peichl vom Frankfurter Max-Planck-Institut für Hirnforschung haben zusammen mit Kollegen der Ludwig-Maximilians-Universität München, der Goethe-Universität Frankfurt am Main sowie der Universitäten Duisburg-Essen und Göttingen das Vorkommen von Cryptochrom 1 in der Netzhaut von 90 Säugetierarten untersucht.

Das Cryptochrom 1 der Säugetiere ist das Gegenstück zum Cryptochrom 1a der Vögel.

Mit Hilfe von Antikörpern gegen die Licht-aktivierte Form haben sie Cryptochrom 1 nur in einigen Arten aus der Gruppe der Raubtiere und der Affen gefunden. Dort befindet es wie bei den Vögeln in den blau-empfindlichen Zapfen.

Bei den Raubtieren besitzen hundeartige Säuger wie Hund, Wolf, Bär, Fuchs und Dachs das Molekül, katzenartige Raubtiere wie Katzen, Löwen und Tiger dagegen nicht.

Bei Affen kommt Cryptochrom 1 zum Beispiel im Orang-Utan vor. Bei allen anderen der 16 untersuchten Säugetier-Ordnungen konnten die Forscher kein aktives Cryptochrom 1 in den Zapfenzellen der Netzhaut entdecken.

Das aktive Cryptochrom 1 sitzt in den lichtempfindlichen Außensegmenten der Zapfenzellen. Es ist deshalb unwahrscheinlich, dass es von dort die Tagesrhythmik der Tiere steuert, da diese im entfernt liegenden Zellkern geregelt wird. Auch als zusätzliches Sehpigment zur Farbwahrnehmung dient das Cryptochrom 1 wahrscheinlich nicht.

Die Forscher vermuten daher, dass einige Säugetiere das Cryptochrom 1 zur Wahrnehmung des Erdmagnetfeldes benutzen. Evolutionär gesehen entsprechen die Blauzapfen der Säugetiere den blau- bis UV-empfindlichen Zapfen der Vögel. Es ist also durchaus möglich, dass das Cryptochrom 1 der Säuger eine vergleichbare Funktion hat.

Tatsächlich deuten Beobachtungen an Füchsen, Hunden und sogar am Menschen daraufhin, dass diese das Erdmagnetfeld wahrnehmen können. Füchse zum Beispiel fangen Mäuse erfolgreicher, wenn sie ihre Beute in Nordost-Richtung anspringen.

„Allerdings waren wir sehr überrascht, aktives Cryptochrom 1 nur in den Zapfenzellen von zwei Säugetiergruppen zu finden, denn auf das Magnetfeld reagieren auch Arten, deren Zapfen kein aktives Cryptochrom 1 besitzen, etwa einige Nagetiere und Fledermäuse“, sagt Christine Nießner.

Eine Erklärung dafür könnte sein, dass Tiere das Magnetfeld auch auf andere Art wahrnehmen können: zum Beispiel mit Hilfe von Magnetit, mikroskopisch kleinen eisenhaltigen Partikeln in Zellen.

Ein Magnetit-basierter Magnetsinn funktioniert nach dem Prinzip eines Taschenkompasses und benötigt kein Licht. Die in lichtlosen Tunnelsystemen lebenden Graumulle beispielsweise orientieren sich mit einem solchen Kompass.

Auch Vögel besitzen einen zusätzlichen, auf Magnetit beruhenden Orientierungsmechanismus, mit dem sie ihre Position bestimmen.

Bei der Erforschung des Magnetsinnes sind also noch viele grundsätzliche Fragen offen. Künftige Untersuchungen müssen zeigen, ob das Cryptochrom 1 in den Blauzapfen auch bei den Säugetieren zu einem Magnetsinn gehört oder ob es andere Aufgaben in der Netzhaut übernimmt.

Publikation (Open Access)

Christine Nießner, Susanne Denzau, Erich Pascal Malkemper, Julia Christina Gross, Hynek Burda, Michael Winklhofer, Leo Peichl (2016) Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals. Scientific Reports 6, 21848; doi: 10.1038/srep21848.



Weitere Meldungen

Mückenfledermaus (Pipistrellus pygmaeus) ; Bildquelle: Christian Giese

Wandernde Mückenfledermäuse können Erdmagnetfeld wahrnehmen

Mückenfledermäuse verfügen über einen magnetischen Kompass und kalibrieren diesen bei Sonnenuntergang – darauf deuten die Ergebnisse einer neuen Studie hin, die in der Fachzeitschrift Biology Letters erschienen ist
Weiterlesen

Carl von Ossietzky-Universität Oldenburg

Which radio waves disrupt the magnetic sense in migratory birds?

Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study published in the journal PNAS has found an upper bound for the frequency that disrupts the magnetic compass
Weiterlesen

In der ersten Phase des SFB gelang der Nachweis, dass das Eiweiß Cryptochrom 4 (die gelbliche Substanz im Röhrchen) magnetisch sensitiv ist. Die Forschenden stellen das Protein, das in der Netzhaut von Zugvögeln vorkommt, mit Bakterienkulturen her; Bildquelle: Universität Oldenburg/Christina Kuhaupt

Wie Tiere ihren Weg finden

Die erstaunlichen Navigationsleistungen von Vögeln, Fledermäusen und Fischen und ihre Fähigkeit, sich am Magnetfeld der Erde zu orientieren, stehen im Mittelpunkt des Sonderforschungsbereichs (SFB) „Magnetrezeption und Navigation in Vertebraten“ an der Universität Oldenburg
Weiterlesen

Der Oldenburger Neurobiologe Prof. Dr. Henrik Mouritsen erforscht den Magnetsinn von Vögeln seit über 15 Jahren.; Bildquelle: Universität Oldenburg

Wie funktioniert der Magnetsinn von Tieren?

Auf ihren oft mehrere tausend Kilometer langen Flügen navigieren Zugvögel erstaunlich präzise. Sie orientieren sich dabei am Sonnenstand, an den Sternen und am Erdmagnetfeld
Weiterlesen

Universität Duisburg-Essen

Schweine mit innerem Kompass

Wild- und Warzenschweine haben anscheinend einen Magnetsinn – das fand ein deutsch-tschechisches Forscherteam um den Zoologen Dr. E. Pascal Malkemper von der Universität Duisburg-Essen (UDE) heraus
Weiterlesen

Goethe-Universität Frankfurt am Main

Lichtabhängiger Magnetkompass der Vögel

Zugvögel, aber auch Hühner, besitzen in ihrem Auge einen lichtabhängigen Kompass. Er gibt ihnen Informationen über die Richtung des Erdmagnetfelds
Weiterlesen

Waldmaus; Bildquelle: UDE

Auch die Waldmaus hat einen Magnetsinn

Dass Zugvögel dank des Erdmagnetfelds den Weg zu ihren Winter- und Brutquartieren finden, ist schon lange bekannt. Dass dieser sechste Sinn auch ganz ähnlich bei der Waldmaus zu finden ist, fand ein internationales Team um Dr. E. Pascal Malkemper von der Universität Duisburg-Essen (UDE) heraus
Weiterlesen

Universität Duisburg-Essen

Auch Hunde haben einen Magnetsinn

Der beste Freund des Menschen, der Hund, ist bekannt für sein ausgezeichnetes Hörvermögen und seinen feinen Geruchssinn. Neu ist die Erkenntnis, dass er auch einen Magnetsinn hat und sich deshalb möglicherweise auch besonders gut orientieren kann
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen